Allelic heterogeneity and trade-off shape natural variation for response to soil micronutrient

As sessile organisms, plants have to cope with diverse environmental constraints that may vary through time and space, eventually leading to changes in the phenotype of populations through fixation of adaptive genetic variation. To fully comprehend the mechanisms of evolution and make sense of the e...

Full description

Saved in:
Bibliographic Details
Published inPlos Genetics 7 (8), . (2012)
Main Authors Poormohammad Kiani, Seifollah, TRONTIN, Charlotte, Andreatta, Matthew, Simon, Matthieu, Robert, Thierry, Salt, David E, Loudet, Olivier
Format Publication
LanguageEnglish
Published 2012
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:As sessile organisms, plants have to cope with diverse environmental constraints that may vary through time and space, eventually leading to changes in the phenotype of populations through fixation of adaptive genetic variation. To fully comprehend the mechanisms of evolution and make sense of the extensive genotypic diversity currently revealed by new sequencing technologies, we are challenged with identifying the molecular basis of such adaptive variation. Here, we have identified a new variant of a molybdenum (Mo) transporter, MOT1, which is causal for fitness changes under artificial conditions of both Mo-deficiency and Mo-toxicity and in which allelic variation among West-Asian populations is strictly correlated with the concentration of available Mo in native soils. In addition, this association is accompanied at different scales with patterns of polymorphisms that are not consistent with neutral evolution and show signs of diversifying selection. Resolving such a case of allelic heterogeneity helps explain species-wide phenotypic variation for Mo homeostasis and potentially reveals trade-off effects, a finding still rarely linked to fitness.
Bibliography:http://prodinra.inra.fr/record/214596
http://prodinra.inra.fr/ft/702D2EFD-E3D9-42CC-B983-1ED1F593CC19
10.1371/journal.pgen.1002814