LEARNING DEVICE, CLASSIFICATION DEVICE, LEARNING METHOD, CLASSIFICATION METHOD, AND PROGRAM

A learning device according to an embodiment is characterized by comprising: an input means which enters both training data for learning a classifier, and a cause-and-effect graph representing the cause-and-effect relationship between variables included in the training data; and a learning means whi...

Full description

Saved in:
Bibliographic Details
Main Authors CHIKAHARA, Yoichi, FUJINO, Akinori
Format Patent
LanguageEnglish
French
Japanese
Published 06.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A learning device according to an embodiment is characterized by comprising: an input means which enters both training data for learning a classifier, and a cause-and-effect graph representing the cause-and-effect relationship between variables included in the training data; and a learning means which uses the training data and the cause-and-effect graph entered by the input means to learn the classifier by solving an optimization problem that includes the constraint that the average of the cause-and-effect impacts between prescribed variables be within a prescribed range and the variance of the cause-and-effect impacts be equal to or less than a prescribed value. Selon un mode de réalisation, la présente invention concerne un dispositif d'apprentissage caractérisé en ce qu'il comprend : un moyen d'entrée qui saisit à la fois des données d'apprentissage permettant d'apprendre un classifieur, et un graphique cause-effet représentant la relation de cause à effet entre des variables étant dans les données d'apprentissage ; et un moyen d'apprentissage qui utilise les données d'apprentissage et le graphique de cause-effet saisi par le moyen d'entrée afin d'apprendre le classifieur en résolvant un problème d'optimisation qui comporte la contrainte que la moyenne des impacts de cause à effet entre des variables prescrites se trouve dans une plage prescrite et que la variance des impacts de cause à effet soit égale ou inférieure à une valeur prescrite. 一実施形態に係る学習装置は、分類器を学習するための訓練データと、前記訓練データに含まれる変数間の因果関係を表す因果グラフとを入力する入力手段と、前記入力手段により入力された訓練データと因果グラフとを用いて、所定の変数間の因果効果の平均が所定の範囲内にあり、かつ、前記因果効果の分散が所定の値以下である制約付き最適化問題を解くことにより前記分類器を学習する学習手段と、を有することを特徴とする。
Bibliography:Application Number: WO2019JP42339