Noise attentuation using a dipole sparse Tau-p inversion

An input seismic data set is obtained, and a first inversion is conducted on a first frequency filtered input seismic data set across all slowness values in the plurality of slowness values using an inversion matrix with dipole modulation containing a plurality of Tau-p operators and a plurality of...

Full description

Saved in:
Bibliographic Details
Main Authors Wang Ping, Zhang Zhigang, Ray Suryadeep
Format Patent
LanguageEnglish
Published 16.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An input seismic data set is obtained, and a first inversion is conducted on a first frequency filtered input seismic data set across all slowness values in the plurality of slowness values using an inversion matrix with dipole modulation containing a plurality of Tau-p operators and a plurality of dipole terms to transform the first frequency filtered input seismic data set from a time domain to a Tau-p domain having a plurality of first inversion Tau-p coefficients. Each Tau-p coefficient associated with one of the plurality of slowness values. The first inversion Tau-p coefficients are used to identify a subset of slowness values from the plurality of slowness values, and iterative sparse Tau-p inversion using the identified subset of slowness values is performed. The input seismic data set is modified to generate a noise attenuated seismic data set based on the iterative sparse Tau-p inversion.
Bibliography:Application Number: US201514908301