Interconnector material, intercellular separation structure, and solid electrolyte fuel cell

Provided is an interconnector material which is chemically stable in both oxidation atmospheres and reduction atmospheres, has a high electron conductivity (electric conductivity), a low ionic conductivity, does not contain Cr, and enables a reduction in sintering temperature. The interconnector mat...

Full description

Saved in:
Bibliographic Details
Main Authors IHA MICHIAKI, TAKATA KAZUHIDE
Format Patent
LanguageEnglish
Published 23.09.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Provided is an interconnector material which is chemically stable in both oxidation atmospheres and reduction atmospheres, has a high electron conductivity (electric conductivity), a low ionic conductivity, does not contain Cr, and enables a reduction in sintering temperature. The interconnector material is arranged between a plurality of cells each composed of an anode layer, a solid electrolyte layer, and a cathode layer stacked sequentially, and electrically connects the plurality of cells to each other in series in a solid electrolyte fuel cell. The interconnector is formed of a ceramic composition represented by the composition formula La(Fe1-xAlx)O3 in which 0<x<0.5.
Bibliography:Application Number: US201113005649