Wavelength tunable semiconductor laser having multiple sets of intercavity spacings

An array of optically coupled cavities (called micro-cavities) of a semiconductor laser are defined by either an etch and/or by a native oxide of an aluminum-bearing III-V semiconductor material and are arranged serially end-to-end along the longitudinal direction. An etch and/or native oxide define...

Full description

Saved in:
Bibliographic Details
Main Authors MCCALLUM DAVID S, SUGG ALAN R
Format Patent
LanguageEnglish
Published 24.05.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An array of optically coupled cavities (called micro-cavities) of a semiconductor laser are defined by either an etch and/or by a native oxide of an aluminum-bearing III-V semiconductor material and are arranged serially end-to-end along the longitudinal direction. An etch and/or native oxide defines a refractive index change for the longitudinal optical mode and confines the optical field within the micro-cavities, resulting in reflection and optical feedback distributed periodically along the laser stripe in the form of an optically coupled micro-cavity. The wavelength of emission of the laser is controlled by a combination of the length of the optical micro-cavities and the spacing between adjacent optical micro-cavities. Single-longitudinal-mode operation is exhibited over an extended drive current range. In one embodiment, two or more linear arrays of end-coupled micro-cavities are arranged in the longitudinal axis of the laser cavity to obtain a tunable laser. The device, with multiple reflectors constructed out of optical micro-cavities, is tuned either thermally or by current injection partitioned among the elements. The tunable laser exhibits a vernier tuning amongst resonances of the two or more optically-coupled micro-cavities.
Bibliography:Application Number: US20100895976