Fabrication of large area x-ray image capturing element

A large imaging panel useful for direct radiography is prepared from two or four discrete modules, or tiles, containing arrays of solid state pixels. In preparing the large panels, a protective layer is applied over the array of solid state pixels on each module to protect the modules during subsequ...

Full description

Saved in:
Bibliographic Details
Main Authors JEROMIN; LOTHAR S, PERROTTO; JOSEPH A, DAVIS; JAMES E, ROBINSON, JR.; GEORGE D
Format Patent
LanguageEnglish
Published 27.10.1998
Edition6
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A large imaging panel useful for direct radiography is prepared from two or four discrete modules, or tiles, containing arrays of solid state pixels. In preparing the large panels, a protective layer is applied over the array of solid state pixels on each module to protect the modules during subsequent processing steps. One or two edges of each protected module is trimmed and polished to form a polished edge which is within a specified distance from the solid state pixels of the array. The polished edges typically are surface treated (e.g., by etching) to enhance wetting and adherence of applied adhesive material. Protected modules are then assembled on a flat surface to form a two-dimensional mosaic of the modules in a way that each polished edge of each module is placed adjacent to the polished edge of a neighboring module to form a gap and a precise separation between the pixels of neighboring modules which is the same as the separation between adjacent pixels of one of the modules. A curable polymeric material is applied to each gap and cured so that each gap is at least partially filled. A base plate is adhered to the mosaic by means of a curable adhesive layer which is cured. The protected mosaic array is removed intact from the flat surface and each gap between the protective layers of the mosaic is filled with the curable polymeric material to a level at least above the top surfaces of the modules, and the curable polymeric material is cured. The protective layers are then removed from each array of pixels to leave a uniform ridge of cured polymeric material corresponding to each gap. A continuous radiation detecting layer of a material such as selenium is formed over the modules to complete the large radiographic imaging panel.
Bibliography:Application Number: US19960680951