Comprehensive process for low temperature SI epit axial growth
A system and method for growing low defect density epitaxial layers of Si on imperfectly cleaned Si surfaces by either selective or blanket deposition at low temperatures using the APCVD process wherein a first thin, e.g., 10 nm, layer of Si is grown on the surface from silane or disilane, followed...
Saved in:
Main Authors | , , |
---|---|
Format | Patent |
Language | English |
Published |
13.07.1993
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A system and method for growing low defect density epitaxial layers of Si on imperfectly cleaned Si surfaces by either selective or blanket deposition at low temperatures using the APCVD process wherein a first thin, e.g., 10 nm, layer of Si is grown on the surface from silane or disilane, followed by the growing of the remainder of the film from dichlorosilane (DCS) at the same low temperature, e.g., 550 DEG C. to 850 DEG C. The subsequent growth of the second layer with DCS over the first layer, especially if carried out immediately in the very same deposition system, will not introduce additional defects and may be coupled with high and controlled n-type doping which is not available in a silane-based system. Further, in order to achieve an optimal trade-off between the need for an inert ambience to promote silane reaction at low temperature and the need for a hydrogen ambience to prevent surface oxidation from inadvertant residual impurities, depositions are carried out in an ambience composed primarily of He but always containing some H2. Alternatively, instead of using He for H2 as the primary carrier gas when depositing Si from silane at low temperatures, DCS with a diborane additive may be used instead of silane in the normal hydrogen carrier. This modification permits DCS to be used in atmospheric pressure processes for Si deposition at low temperatures, which conventionally deposit Si selectively, to deposit blanket (non-selective) Si films over insulator and Si areas, and particularly such areas on a patterned wafer. Because the Si deposition rate is enhanced when diborane is added, significant non-selective deposition rates can occur down to 550 DEG C. |
---|---|
Bibliography: | Application Number: US19910785731 |