Permeable nozzle method and apparatus for closed feeding of molten metal into twin-belt continuous casting machines

The closed-channeled, multi-passaged nozzles have gas-permeable refractory walls, allowing the escape of gases that may be dissolved in the molten metal and become expelled or liberated from it while the molten metal is flowing through the passageways in the nozzle. Gaseous voids in the continuously...

Full description

Saved in:
Bibliographic Details
Main Author SZCZYPIORSKI; WOJTEK
Format Patent
LanguageEnglish
Published 27.11.1990
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The closed-channeled, multi-passaged nozzles have gas-permeable refractory walls, allowing the escape of gases that may be dissolved in the molten metal and become expelled or liberated from it while the molten metal is flowing through the passageways in the nozzle. Gaseous voids in the continuously cast product are thereby avoided, notably in aluminum casting as shown by experimental results to date. The nozzles are made from gas-permeable refractory material having interconnected porosity -- that is, interconnected void interstices -- extending through the nozzle walls. The interconnected void interstices are of sufficient size for allowing the passage of hydrogen gas through the walls, while being sufficiently small for preventing the leakage of molten metal. The gas-permeable refractory material is relatively non-wettable by the molten metal. For example, the nozzles are made of fibrous sintered refractory material -- for instance, fibers of alumina or silica intertwined and cohered within a major volume-percentage of interstitial voids, which provide the interconnected porosity. Such fibrous material displays high resistance to thermal shock. It is relatively compliant to nozzle clamps, with consequent resistance to breakage, while the coefficients of thermal conductivity and thermal expansion of such fibrous refractory material are advantageously low.
Bibliography:Application Number: US19890426096