Method of making an integral heater for composite structure
A heater for a composite structure (2) is integrally formed as part of the structure (2) itself. The structure (2) comprises a layer of conductive fibers (30), such as a carbon felt mat, embedded in a nonconductive matrix (31). Electrodes (11, 12) inject an electrical current through multiple paths...
Saved in:
Main Authors | , |
---|---|
Format | Patent |
Language | English |
Published |
11.09.1990
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A heater for a composite structure (2) is integrally formed as part of the structure (2) itself. The structure (2) comprises a layer of conductive fibers (30), such as a carbon felt mat, embedded in a nonconductive matrix (31). Electrodes (11, 12) inject an electrical current through multiple paths (15) through the conductive fibers (30), whereby the fibers (30) convert the electrical current to heat energy. Thus, the fibers (30) serve the dual roles of structural support to the composite structure (2) and heat converters. The composite structure (2) can be a portion of or an entire paraboloidal antenna reflector (6), in which case the heater of the present invention prevents and removes ice and snow build-up thereon. Cutting slits (8) into the composite structure (2) is a technique which can be used to vary the heat distribution within the structure (2). The slits (8) are positioned according to the shape of the structure (2) and the location of the current injecting electrodes (11, 12). |
---|---|
Bibliography: | Application Number: US19890384196 |