Cardiac and respiratory gated magnetic resonance imaging

A magnetic resonance imaging apparatus (A) generates a uniform main magnetic field, gradient fields transversely thereacross, excites resonance in nuclei within an image region, receives radio frequency signals from the resonating nuclei, and reconstructs images representative thereof. Electrodes (3...

Full description

Saved in:
Bibliographic Details
Main Authors BLAKELEY; DOUGLAS M, GANGAROSA; RAYMOND E, KERSHAW; CAROLYN A
Format Patent
LanguageEnglish
Published 22.09.1987
Edition4
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A magnetic resonance imaging apparatus (A) generates a uniform main magnetic field, gradient fields transversely thereacross, excites resonance in nuclei within an image region, receives radio frequency signals from the resonating nuclei, and reconstructs images representative thereof. Electrodes (30) monitor the cardiac cycle of a patient (B) being imaged and an expansible belt (32) monitors the respiratory cycle. A carrier signal from a generator (52) is modulated with the respiratory signals. The modulated carrier signals are combined (60) with the cardiac signals and converted to a light signal by a light source (62). A fiber optic cable (36) conducts the light signals to a light receiver (70). Band pass filters (72, 100) separate the received cardiac and respiratory encoded carrier signals. A zero detector (80) provides a scan initiation signal in response to a preselected portion of the cardiac cycle. The respiratory encoded carrier signal is demodulated by demodulator (102) and a comparator (116) blocks or enables the processing of image data during a selected window of the respiratory cycle. A window adjustment means (118) adjusts the respiratory window as a function of phase encoding of the resonating nuclei.
Bibliography:Application Number: US19850764440