HIGH-PURITY COMPACT CALCIUM HEXA-ALUMINATE-BASED REFRACTORY MATERIAL AND PREPARATION METHOD THEREFOR

The present invention belongs to the technical field of refractory materials, and disclosed are a high-purity compact calcium hexa-aluminate-based refractory material, a preparation method therefor, and a working lining using the same. The mixing ratio is adjusted according to the chemical compositi...

Full description

Saved in:
Bibliographic Details
Main Authors LI, Guangqi, JIA, Yuanping, GUO, Yutao, LI, Bin, FENG, Jisheng, CHEN, Junhong, ZHU, Bo
Format Patent
LanguageEnglish
Published 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The present invention belongs to the technical field of refractory materials, and disclosed are a high-purity compact calcium hexa-aluminate-based refractory material, a preparation method therefor, and a working lining using the same. The mixing ratio is adjusted according to the chemical composition of the final product to contain raw materials containing CaO, Al2O3 and ZrO2, the mixing ratio enabling the ratio of the chemical composition CaO:Al2O3:ZrO2 calculated according to parts by mass to be 45.5-95.5%:2.0-8.4%:0-50%; and the chemical composition are placed into a high-temperature furnace and a mold for hot-pressing is carried out, the maximum temperature is 1550-1800° C., and the hot-pressing strength is 0.5-30 MPa. In the present invention, when no sintering agent is added, a hot-pressing sintering process is employed according to a proportion to obtain a high-purity compact calcium hexa-aluminate-based refractory material, and the refractory material has excellent resistance to molten steel erosion and thermal shock stability, and can be widely applied in metallurgy, building materials and petrochemical industries as well as other industries. The preparation method is scientific and reasonable, product purity is high, and the prepared refractory material product can increase a device operation period; in addition, production costs are reduced, and energy-saving and emission-reducing effects are achieved.
Bibliography:Application Number: US202218290398