Machine Learning Model for Detecting Out-Of-Distribution Inputs
A method includes determining, by a machine learning model and based on input data, a feature map that represents learned features present in the input data. The method also includes, for each respective inlier class of a plurality of inlier classes, determining, by the machine learning model and ba...
Saved in:
Main Authors | , , , , , |
---|---|
Format | Patent |
Language | English |
Published |
23.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A method includes determining, by a machine learning model and based on input data, a feature map that represents learned features present in the input data. The method also includes, for each respective inlier class of a plurality of inlier classes, determining, by the machine learning model and based on the feature map, a corresponding inlier score indicative of a probability that the input data belongs to the respective inlier class. The method additionally includes, for each respective outlier class of a plurality of outlier classes, determining, by the machine learning model and based on the feature map, a corresponding outlier score indicative of a probability that the input data belongs to the respective outlier class. The method further includes determining, based on the inlier scores and the outlier scores, whether the input data corresponds to the plurality of inlier classes or to the plurality of outlier classes. |
---|---|
Bibliography: | Application Number: US202218551847 |