AUTOMATIC EVALUATION OF THREE-DIMENSIONAL VEHICLE PERCEPTION USING TWO-DIMENSIONAL DEEP NEURAL NETWORKS
Vehicle perception techniques include applying a 3D DNN to a set of inputs to generate 3D detection results including a set of 3D objects, transforming the set of 3D objects onto a set of images as a first set of 2D bounding boxes, applying a 2D DNN to the set of images to generate 2D detection resu...
Saved in:
Main Authors | , , |
---|---|
Format | Patent |
Language | English |
Published |
08.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Vehicle perception techniques include applying a 3D DNN to a set of inputs to generate 3D detection results including a set of 3D objects, transforming the set of 3D objects onto a set of images as a first set of 2D bounding boxes, applying a 2D DNN to the set of images to generate 2D detection results including a second set of 2D bounding boxes, calculating mean average precision (mAP) values based on a comparison between the first and second sets of 2D bounding boxes, identifying a set or corner cases based on the calculated mAP values, and re-training or updating the 3D DNN using the identified set of corner cases, wherein a performance of the 3D DNN is thereby increased without the use of expensive additional manually and/or automatically annotated training datasets. |
---|---|
Bibliography: | Application Number: US202217881111 |