Lenses, Devices and Methods for Ocular Refractive Error
Certain embodiments are directed to lenses, devices and/or methods. For example, a lens for an eye having an optical axis and an aberration profile along its optical axis, the aberration profile having a focal distance and including higher order aberrations having at least one of a primary spherical...
Saved in:
Main Authors | , , |
---|---|
Format | Patent |
Language | English |
Published |
02.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Certain embodiments are directed to lenses, devices and/or methods. For example, a lens for an eye having an optical axis and an aberration profile along its optical axis, the aberration profile having a focal distance and including higher order aberrations having at least one of a primary spherical aberration component C(4,0) and a secondary spherical aberration component C(6,0). The aberration profile may provide, for a model eye with no aberrations and an on-axis length equal to the focal distance: (i) a peak, first retinal image quality (RIQ) within a through focus range that remains at or above a second RIQ over the through focus range that includes said focal distance, where the first RIQ is at least 0.35, the second RIQ is at least 0.1 and the through focus range is at least 1.8 Diopters; (ii) a RIQ of 0.3 with a through focus slope that improves in a direction of eye growth; and (iii) a RIQ of 0.3 with a through focus slope that degrades in a direction of eye growth. The RIQ may be Visual Strehl Ratio or similar measured along the optical axis for at least one pupil diameter in the range 3 mm to 6 mm, over a spatial frequency range of 0 to 30 cycles/degree inclusive and at a wavelength selected from within the range 540 nm to 590 nm inclusive. |
---|---|
Bibliography: | Application Number: US202318129429 |