MULTILAYER ELECTROSTATIC ACTUATOR

To provide a simply-structured multilayer electrostatic actuator that exhibits a sufficient stroke and a sufficient contraction force in a specific drive range, and rapidly hardens upon an attempt to widen the interval between electrodes beyond the drive range. A multilayer electrostatic actuator (1...

Full description

Saved in:
Bibliographic Details
Main Authors ITO, Makoto, IMAI, Yuichi, IZUMITANI, Hikaru, SANEYOSHI, Keiji, UCHI, Tomio, OKUDA, Kazuo
Format Patent
LanguageEnglish
Published 05.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To provide a simply-structured multilayer electrostatic actuator that exhibits a sufficient stroke and a sufficient contraction force in a specific drive range, and rapidly hardens upon an attempt to widen the interval between electrodes beyond the drive range. A multilayer electrostatic actuator (1) is configured by a plurality of actuator parts (2a, 2b. 2c) each including: a first film (3a1, 3b1, 3c1) having a plurality of first connection regions (7a1, 7b1, 7c1) formed on one surface in a predetermined pattern; and a second film (3a2, 3b2, 3c2) connected to the first film via the first connection regions, and having a plurality of second connection regions (7a2, 7b2, 7c2) formed on a surface opposite to the first film in the identical pattern. The actuator parts are connected and layered via the second connection regions. On both the first film and the second film of one actuator part (2a, 2b. 2c), a non-connection region (15) is formed having a substantially fixed width between connection regions adjacent to each other as viewed in a layering direction (Z). The first connection regions and the second connection regions are arranged so as not to overlap each other as viewed in the layering direction. Axes of the patterns between two actuator parts (2a, 2b; 2b, 2c) connected intersect each other at a predetermined angle (θ, except θ =0°) as viewed in the layering direction. When the multilayer electrostatic actuator is pulled in the layering direction due to an external force, the non-connection region, in particular mainly the non-connection region of the second film, is bending-deformed to separate the first film and the second film, resulting in the multilayer electrostatic actuator extending in the layering direction. Further pulling makes the non-connection region tensile-deformed and hardened. When a voltage is applied, the multilayer electrostatic actuator contracts in the layering direction due to the electrostatic attractive force.
Bibliography:Application Number: US202118009092