Power Supply Circuit Without Charging Loop, and Power Management System

The present disclosure provides a power supply circuit without a charging loop, and a power management system. The power supply circuit comprises an alternating current switch component, a photovoltaic switching component and a direct-current bus capacitor. The alternating current switch component i...

Full description

Saved in:
Bibliographic Details
Main Authors Feng, Shangxian, Huang, Meng, Cui, Chenghao, Wang, Jing, Sheng, Mingqiang, Fang, Mingzhao
Format Patent
LanguageEnglish
Published 07.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The present disclosure provides a power supply circuit without a charging loop, and a power management system. The power supply circuit comprises an alternating current switch component, a photovoltaic switching component and a direct-current bus capacitor. The alternating current switch component is configured to electrically connect a live wire of a three-phase alternating current to a direct-current bus, and cause, when an alternating current is selected to charge the direct-current bus capacitor, a voltage across two ends of a direct-current bus capacitor to steadily rise to a target voltage. The photovoltaic switching component is configured to electrically connect a photovoltaic power supply to the direct-current bus, and cause, when the photovoltaic power supply is selected to charge the direct-current bus capacitor, the voltage across the two ends of the direct-current bus capacitor to steadily rise to the target voltage. The direct-current bus capacitor is electrically connected between a positive electrode and a negative electrode of the direct-current bus. When the alternating current or the photovoltaic power supply is electrically connected to the direct-current bus, the alternating current switch component or the photovoltaic switching component can control the voltage across the two ends of the direct-current bus capacitor to stably rise to the target voltage, thereby preventing causing damage to components on the direct-current bus by a large impact current generated by a rapid rise of the voltage across the two ends of the direct-current capacitor.
Bibliography:Application Number: US202118016387