THERMALLY STABLE, CLADDED PERMANENT MAGNETS, AND COMPOSITIONS AND METHODS FOR MAKING THE SAME
The disclosed technology provides a cladded permanent magnet comprising: a core magnet region containing a core magnetic material; and a magnet cladding containing a shell magnetic material comprising (i) a magnetic compound that is chemically the same as the core magnetic material, (ii) one or more...
Saved in:
Main Authors | , , , , , , |
---|---|
Format | Patent |
Language | English |
Published |
07.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The disclosed technology provides a cladded permanent magnet comprising: a core magnet region containing a core magnetic material; and a magnet cladding containing a shell magnetic material comprising (i) a magnetic compound that is chemically the same as the core magnetic material, (ii) one or more rare earth elements, and (iii) metal-containing inoculant nanoparticles, wherein the magnet cladding is disposed on the core magnet region, wherein the magnet cladding has at least 10% higher ambient-temperature magnetic coercivity compared to the core magnet region. The cladded permanent magnet is made via high-throughput laser-based additive manufacturing to optimize the architecture of NdFeB or other magnets, generating site-specific, demagnetization-resistant microstructures. This disclosure teaches a rapid, single-step laser-based process to tailor the easy axis alignment, grain size, and microstructure of a permanent magnet at corners and edges to resist demagnetization. |
---|---|
Bibliography: | Application Number: US202318114202 |