SYSTEMS AND METHODS FOR LINEARIZING NON-LINEAR CHIRP SIGNALS

A light detection and ranging (LiDAR) sensor is described herein. The LiDAR sensor can comprise a fiber optic ending, a laser assembly, and one or more processors. The fiber optic ending can comprise a fiber optic cable terminated by a reflector. The laser assembly can emit a chirp signal to detect...

Full description

Saved in:
Bibliographic Details
Main Author Abari, Cyrus F
Format Patent
LanguageEnglish
Published 03.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A light detection and ranging (LiDAR) sensor is described herein. The LiDAR sensor can comprise a fiber optic ending, a laser assembly, and one or more processors. The fiber optic ending can comprise a fiber optic cable terminated by a reflector. The laser assembly can emit a chirp signal to detect an object in an environment. A portion of the chirp signal can be diverted to the fiber optic ending. The one or more processors construct a profile of the chirp signal based on the diverted portion of the chirp signal. The one or more processors determine a best fit curve based on the profile of the chirp signal and one or more parameters associated with the best fit curve. A frequency offset between an emitted chirp signal and a returned chirp signal can be computed based on the best fit curve and the one or more parameters. Based on the frequency offset, the one or more processors can determine a range of the object.
Bibliography:Application Number: US202017039127