REAL-TIME PREDICTIVE RECOMMENDATION SYSTEM USING PER-SET OPTIMIZATION

In general, embodiments of the present invention provide systems, methods and computer readable media configured to use a per-set level optimization of the rank order of promotions to be recommended to a consumer. In some embodiments, machine learning is used offline to generate a predictive diversi...

Full description

Saved in:
Bibliographic Details
Main Author Wai, Lawrence Lee
Format Patent
LanguageEnglish
Published 16.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In general, embodiments of the present invention provide systems, methods and computer readable media configured to use a per-set level optimization of the rank order of promotions to be recommended to a consumer. In some embodiments, machine learning is used offline to generate a predictive diversity model that receives one or more similarity rank features associated with a promotion (e.g., category, price band) as input, and produces an output multiplier to be applied to the promotion's respective associated relevance score (e.g., a relevance score representing a prediction of the promotion's conversion rate without diversity features). At run time, per-set optimization of the ordering of a set of promotions is implemented by adjusting the respective associated relevance scores of the promotions using the diversity model and then re-ordering the set of promotions based on their respective adjusted relevance scores.
Bibliography:Application Number: US202117354261