DISTRIBUTABLE CLASSIFICATION SYSTEM

A computer trains a classification model. (A) An estimation vector is computed for each observation vector using a weight value, a mean vector, and a covariance matrix. The estimation vector includes a probability value for each class of a plurality of classes for each observation vector that indica...

Full description

Saved in:
Bibliographic Details
Main Authors Wang, Yingjian, Chen, Xu, Sethi, Saratendu
Format Patent
LanguageEnglish
Published 02.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A computer trains a classification model. (A) An estimation vector is computed for each observation vector using a weight value, a mean vector, and a covariance matrix. The estimation vector includes a probability value for each class of a plurality of classes for each observation vector that indicates a likelihood that each observation vector is associated with each class. A subset of the plurality of observation vectors has a predefined class assignment. (B) The weight value is updated using the computed estimation vector. (C) The mean vector for each class is updated using the computed estimation vector. (D) The covariance matrix for each class is updated using the computed estimation vector. (E) A convergence parameter value is computed. (F) A classification model is trained by repeating (A) to (E) until the computed convergence parameter value indicates the mean vector for each class of the plurality of classes is converged.
AbstractList A computer trains a classification model. (A) An estimation vector is computed for each observation vector using a weight value, a mean vector, and a covariance matrix. The estimation vector includes a probability value for each class of a plurality of classes for each observation vector that indicates a likelihood that each observation vector is associated with each class. A subset of the plurality of observation vectors has a predefined class assignment. (B) The weight value is updated using the computed estimation vector. (C) The mean vector for each class is updated using the computed estimation vector. (D) The covariance matrix for each class is updated using the computed estimation vector. (E) A convergence parameter value is computed. (F) A classification model is trained by repeating (A) to (E) until the computed convergence parameter value indicates the mean vector for each class of the plurality of classes is converged.
Author Wang, Yingjian
Sethi, Saratendu
Chen, Xu
Author_xml – fullname: Wang, Yingjian
– fullname: Chen, Xu
– fullname: Sethi, Saratendu
BookMark eNrjYmDJy89L5WRQdvEMDgnydAoNcXTycVVw9nEMDvZ083R2DPH091MIjgwOcfXlYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkYGhgYmZsYGjobGxKkCAO4tJZ8
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
ExternalDocumentID US2020104630A1
GroupedDBID EVB
ID FETCH-epo_espacenet_US2020104630A13
IEDL.DBID EVB
IngestDate Fri Jul 19 14:29:29 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_US2020104630A13
Notes Application Number: US201916587104
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200402&DB=EPODOC&CC=US&NR=2020104630A1
ParticipantIDs epo_espacenet_US2020104630A1
PublicationCentury 2000
PublicationDate 20200402
PublicationDateYYYYMMDD 2020-04-02
PublicationDate_xml – month: 04
  year: 2020
  text: 20200402
  day: 02
PublicationDecade 2020
PublicationYear 2020
RelatedCompanies SAS Institute Inc
RelatedCompanies_xml – name: SAS Institute Inc
Score 3.2543516
Snippet A computer trains a classification model. (A) An estimation vector is computed for each observation vector using a weight value, a mean vector, and a...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
Title DISTRIBUTABLE CLASSIFICATION SYSTEM
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200402&DB=EPODOC&locale=&CC=US&NR=2020104630A1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5Kfd60KlWrBCq5BfPYNM0hSJ600hdNIvVUss0WBEmLifj3nV1S7anH3YF9MvvN7nwzC_BkWUw1ctJX-ogdCrFVqtg01xTbtBnR1Iyb9JxtMekNUvK6MBcN-NzFwog8oT8iOSJq1Ar1vRLn9fb_ESsQ3MrymX5g1eYlSpxArm_HfMtVXQ48J5xNg6kv-76TxvJkLmTcnWmoLt6VjtCQtjgBLHzzeFzKdh9Uogs4nmF7RXUJDVa04Mzf_b3WgtNx7fJuwYngaK5KrKz1sLyCbjCMk_nQSxPXG4WSP3LxUIzqoGApfo-TcHwN3ShM_IGC_S7_prlM4_1BGjfQLDYFa4O0RhRlOqWEZjkxtXVmWjbVqUYybiHpvVvoHGrp7rD4Hs55UbBR9A40q69v9oBAW9FHsT6_tMx7Xg
link.rule.ids 230,309,783,888,25578,76884
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5KfdSbVsVH1UIlt2CSbprmECTZJKSaPmg2Uk8h225BkLTYiH_f3SXVnnrdgdkXM9_MzmMBHi2Lad0F6qt9jh0qsjWq2nShq7ZpM6RruTDpRbbFqBel6GVmzmrwua2FkX1Cf2RzRC5Rcy7vpdTX6_9HLF_mVm6e6AcfWj2HxPGVyjsWV64Ziu85wWTsj7GCsZMmymgqaSKc2dVc7isdcCO7LzrtB2-eqEtZ74JKeAqHE86vKM-gxoomNPD277UmHA-rkHcTjmSO5nzDBys53JxDxx8kZDrwUuJ6cdDGscuVYlgVBbeT94QEwwvohAHBkcrnzf62maXJ7iK7l1AvVgW7gvaSoygzKEU0XyBTX-amZVOD6igXFpLRu4bWPk43-8kP0IjIMM7iwej1Fk4ESWamGC2ol1_f7I6Dbknv5Vn9AqXsfk4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=DISTRIBUTABLE+CLASSIFICATION+SYSTEM&rft.inventor=Wang%2C+Yingjian&rft.inventor=Chen%2C+Xu&rft.inventor=Sethi%2C+Saratendu&rft.date=2020-04-02&rft.externalDBID=A1&rft.externalDocID=US2020104630A1