DISTRIBUTABLE CLASSIFICATION SYSTEM

A computer trains a classification model. (A) An estimation vector is computed for each observation vector using a weight value, a mean vector, and a covariance matrix. The estimation vector includes a probability value for each class of a plurality of classes for each observation vector that indica...

Full description

Saved in:
Bibliographic Details
Main Authors Wang, Yingjian, Chen, Xu, Sethi, Saratendu
Format Patent
LanguageEnglish
Published 02.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A computer trains a classification model. (A) An estimation vector is computed for each observation vector using a weight value, a mean vector, and a covariance matrix. The estimation vector includes a probability value for each class of a plurality of classes for each observation vector that indicates a likelihood that each observation vector is associated with each class. A subset of the plurality of observation vectors has a predefined class assignment. (B) The weight value is updated using the computed estimation vector. (C) The mean vector for each class is updated using the computed estimation vector. (D) The covariance matrix for each class is updated using the computed estimation vector. (E) A convergence parameter value is computed. (F) A classification model is trained by repeating (A) to (E) until the computed convergence parameter value indicates the mean vector for each class of the plurality of classes is converged.
Bibliography:Application Number: US201916587104