AQUEOUS COATING COMPOSITION WITH SOFT TOUCH UPON DRYING
The present invention relates to an aqueous coating composition comprising dispersed polymer particles, wherein (i) the dispersed polymer particles are polyurethane-vinyl polymer hybrid particles obtained by free-radical polymerization of at least one vinyl monomer in the presence of a polyurethane,...
Saved in:
Main Authors | , , , |
---|---|
Format | Patent |
Language | English |
Published |
05.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The present invention relates to an aqueous coating composition comprising dispersed polymer particles, wherein (i) the dispersed polymer particles are polyurethane-vinyl polymer hybrid particles obtained by free-radical polymerization of at least one vinyl monomer in the presence of a polyurethane, (ii) the polyurethane and the vinyl polymer in the hybrid particles are present in a weight ratio of polyurethane to vinyl polymer ranging from 1:1 to 20:1, (iii) the polyurethane is the reaction product of at least the following components: (a) from 5 to 40 wt. % of at least one organic difunctional isocyanate, (b) from 0.5 to 4 wt. % of an isocyanate-reactive compound containing ionic or potentially ionic water-dispersing groups having a molecular weight of from 100 to 500 g/mol, (c) from 40 to 80 wt. % of at least one diol having a molecular weight from 500 to 5000, (d) from 0 to 10 wt. % of at least one active-hydrogen chain extending compound with a functionality of at least 2 (other than water), (e) from 0 to 10 wt. % of at least one diol having a molecular weight below 500 g/mol, where the amounts of (a), (b), (c), (d) and (e) are given relative to the total amount of components used to prepare the polyurethane from which the building blocks of the polyurethane are emanated, and where the isocyanate and hydroxy groups on the components used to prepare the polyurethane are present in a respective mole ratio (NCO to OH) in the range of from 0.8:1 to 5:1, preferably from 1.05:1 to 5:1 and even more preferably from 1.1:1 to 3.5:1. |
---|---|
Bibliography: | Application Number: US201916542229 |