MOLECULARLY-IMPRINTED-POLYMER COATED CONDUCTIVE NANOPARTICLES FOR COTININE DETECTION, AND ASSOCIATED DEVICES AND METHODS

A device for detecting cotinine includes (a) a film that includes a plurality of molecularly-imprinted-polymer (MIP) coated conductive nanoparticles having specific affinity for binding with cotinine, and (b) two electrodes in contact with the film for passing electrical current through the film to...

Full description

Saved in:
Bibliographic Details
Main Authors BELBRUNO, Joseph J, CHAI, Ziyi
Format Patent
LanguageEnglish
Published 25.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A device for detecting cotinine includes (a) a film that includes a plurality of molecularly-imprinted-polymer (MIP) coated conductive nanoparticles having specific affinity for binding with cotinine, and (b) two electrodes in contact with the film for passing electrical current through the film to detect binding with cotinine as a change in electrical conductivity of the film. A MIP coated conductive nanoparticle for detecting cotinine includes (a) a conductive nanoparticle, (b) a silicon dioxide coating formed on the conductive nanoparticle and forming a first shell around the conductive nanoparticle, and (c) an MIP coating formed on the silicon dioxide coating and forming the second shell, wherein the MIP coating includes a polymer molecularly imprinted with cotinine to provide specific affinity for binding of cotinine to the MIP coated conductive nanoparticle such that the cotinine is detectable as a change in electrical conductivity of the MIP coated conductive nanoparticle.
Bibliography:Application Number: US201716091568