WAVEGUIDE FORMATION USING CMOS FABRICATION TECHNIQUES

Conventional approaches to integrating waveguides within standard electronic processes typically involve using a dielectric layer, such as polysilicon, single-crystalline silicon, or silicon nitride, within the in-foundry process or depositing and patterning a dielectric layer in the backend as a po...

Full description

Saved in:
Bibliographic Details
Main Authors Mehta, Karan Kartik, Orcutt, Jason Scott, Ram, Rajeev Jagga, Atabaki, Amir Hossein
Format Patent
LanguageEnglish
Published 28.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Conventional approaches to integrating waveguides within standard electronic processes typically involve using a dielectric layer, such as polysilicon, single-crystalline silicon, or silicon nitride, within the in-foundry process or depositing and patterning a dielectric layer in the backend as a post-foundry process. In the present approach, the back-end of the silicon handle is etched away after in-foundry processing to expose voids or trenches defined using standard in-foundry processing (e.g., complementary metal-oxide-semiconductor (CMOS) processing). Depositing dielectric material into a void or trench yields an optical waveguide integrated within the front-end of the wafer. For example, a shallow trench isolation (STI) layer formed in-foundry may serve as a high-resolution patterning waveguide template in a damascene process within the front end of a die or wafer. Filling the trench with a high-index dielectric material yields a waveguide that can guide visible and/or infrared light, depending on the waveguide's dimensions and refractive index contrast.
Bibliography:Application Number: US201815902455