SYSTEM FOR DETERMINING UV DOSE IN A REACTOR SYSTEM

The is described a process for determining a validated Reduction Equivalent Dose for reducing the concentration of a target contaminant contained in a fluid in a radiation fluid treatment system. In one embodiment, the process comprises the steps of: (a) determining a short wavelength Reduction Equi...

Full description

Saved in:
Bibliographic Details
Main Authors DAYNOURI-PANCINO FARNAZ, KNIGHT DOUGLAS GORDON, PETRI BRIAN
Format Patent
LanguageEnglish
Published 12.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The is described a process for determining a validated Reduction Equivalent Dose for reducing the concentration of a target contaminant contained in a fluid in a radiation fluid treatment system. In one embodiment, the process comprises the steps of: (a) determining a short wavelength Reduction Equivalent Dose for the target contaminant or a challenge contaminant in a first region of the electromagnetic spectrum having a wavelength of less than or equal to about 240 nm; (b) determining a long wavelength Reduction Equivalent Dose for the target contaminant or a challenge contaminant in a second region of the electromagnetic spectrum having a wavelength of greater than about 240 nm; and (c) summing the short wavelength Reduction Equivalent Dose and the long wavelength Reduction Equivalent Dose to produce the validated Reduction Equivalent Dose for the target contaminant. In a preferred embodiment, the present invention provides a useful approach for determining the relevant Reduction Equivalent Dose (RED) for Cryptosporidium disinfection and accomplishes this by using the discovered relation between the short wavelength sensor signal and the short wavelength RED, and subtracting the short wavelength RED from the RED determined using a challenge microbe with synthetic lamp sleeves, to obtain the long wavelength RED applicable to Cryptosporidium disinfection. In a bioassay, one would only need the short wavelength sensor reading and the challenge microbe RED using synthetic lamp sleeves to determine the applicable RED, once the relationship between the short wavelength sensor reading and the short wavelength RED was established.
Bibliography:Application Number: US201414896507