Substrates Supplied with a Dust and Aerosol-Repellent Coating, Method for the Production Thereof g and Materials for this Purpose

The present invention relates to a coating material containing (a) first oxidic particles formed by hydrolytic condensation, in a size range of 5-20 nm, (b) second particles with a diameter in the size range of 80-300 nm, (c) a first aqueous solvent in which the source material for the oxidic partic...

Full description

Saved in:
Bibliographic Details
Main Authors GOMBERT ANDREAS, GLAUBITT WALTHER, GRAF WOLFGANG
Format Patent
LanguageEnglish
Published 02.06.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The present invention relates to a coating material containing (a) first oxidic particles formed by hydrolytic condensation, in a size range of 5-20 nm, (b) second particles with a diameter in the size range of 80-300 nm, (c) a first aqueous solvent in which the source material for the oxidic particles formed by hydrolytic condensation can be dissolved and which allows or promotes the hydrolysis and condensation thereof, and (d) at least one second solvent, selected among specifically defined alcohols, ethers, organic acids, esters, ketones, amines and amic acids and mixtures thereof. The invention relates in addition to a substrate supplied with a coating, particularly a glass suitable for the photovoltaic and warm water collector domain, wherein the coating is composed of at least two particle fractions, wherein the particles of the first fraction have a diameter in the size range of 5-20 nm, and the particles of the second fraction have a diameter in the size range of 80-300 nm, wherein the particles of the second fraction have an average distance from each other, measured from cone to cone of these particles, of on average 20-200 nm, and wherein the particles of the first particle fraction have pores with a pore radius distribution of which the maximum is between 1 and 6 nm. The coating of the substrate can be achieved by means of the named coating material.
Bibliography:Application Number: US20080674178