ARTICLES FORMED BY MANUFACTURING PROCESSES, SUCH AS THREE-DIMENSIONAL PRINTING, INCLUDING SOLVENT VAPOR FILMING AND THE LIKE
Methods of manufacturing an article use three-dimensional printing for a portion of the manufacturing. Three-dimensionally printing is conducted onto a powder bed which contains both organic-solvent-soluble, water-insoluble particles and water soluble, organic-solvent-insoluble particles. The water-...
Saved in:
Main Authors | , |
---|---|
Format | Patent |
Language | English |
Published |
31.03.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Methods of manufacturing an article use three-dimensional printing for a portion of the manufacturing. Three-dimensionally printing is conducted onto a powder bed which contains both organic-solvent-soluble, water-insoluble particles and water soluble, organic-solvent-insoluble particles. The water-soluble particles which may be selected for properties such as size and may include more than one substance. The organic-solvent-insoluble particles may further include at least one substantially insoluble substance such as a member of the calcium phosphate family. Printing may be done using an aqueous binder liquid. After removal of unbound powder, the preform may be exposed to the vapor of an organic solvent which causes the particles of organic-soluble-polymer to fuse to each other. This may further be followed by dissolving out the water-soluble particles, if such particles were present in the powder. Solvent vapor fusing together with the use of porogen particles may also be used in manufacturing methods other than 3DP. Rather than using organic solvent, heat responsive particles can be used, and can be filmed by elevated temperatures. Articles that may be produced by the described methods exhibit features such as a high porosity and an ability to undergo large deformations without breaking, and by at least partial springback from such deformation. The springback may be substantially instantaneous or may be time-dependent involving a time period of at least several seconds. |
---|---|
Bibliography: | Application Number: US20100899033 |