Differential fiber optical sensor with interference energy analyzer

A fiber optic sensor, which includes an interference energy analyzer, is used to measure strain and temperature distribution along a test fiber. The sensor includes the following: a plurality of double-Bragg grating elements positioned along a test fiber, a broadband light source which produces a br...

Full description

Saved in:
Bibliographic Details
Main Authors SPIRIN VASILII V, SHLYAGIN MIKHAIL G, UDD ERIC
Format Patent
LanguageEnglish
Published 28.11.2002
Edition7
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A fiber optic sensor, which includes an interference energy analyzer, is used to measure strain and temperature distribution along a test fiber. The sensor includes the following: a plurality of double-Bragg grating elements positioned along a test fiber, a broadband light source which produces a broadband spectral profile that propagates along the test fiber, an optical filter that is able to change the parameters of the broadband spectral profile, an optical reflection detector, a fiber optic beamsplitter, and an interference energy analyzer. Each double-Bragg grating element consists of two weak Bragg gratings, separated by a distance unique to each element. The interference energy analyzer calculates the energies of the interference patterns, which are created by beams reflected from double-Bragg grating elements. The energy of the interference signal changes when the gratings in one element non-uniformly change its parameters due to non-equal temperature or strain influence on two gratings.
Bibliography:Application Number: US20020128847