Paramagnetic hexagonal metal phase coupling spacer
A top pinned SAF-containing magnetic tunnel junction structure is provided that contains a coupling spacer composed of a paramagnetic hexagonal metal phase material that has a stoichiometric ratio of Me3X or Me2X, wherein Me is a magnetic metal having a magnetic moment and X is a metal that alloys w...
Saved in:
Main Authors | , , |
---|---|
Format | Patent |
Language | English |
Published |
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A top pinned SAF-containing magnetic tunnel junction structure is provided that contains a coupling spacer composed of a paramagnetic hexagonal metal phase material that has a stoichiometric ratio of Me3X or Me2X, wherein Me is a magnetic metal having a magnetic moment and X is a metal that alloys with Me in a hexagonal phase and dilutes the magnetic moment of Me. In embodiments in which a Me3X coupling spacer is present, Me is cobalt, and X is vanadium, niobium, tantalum, molybdenum or tungsten. In embodiments in which a Me2X coupling spacer is present, Me is iron and X is tantalum or tungsten. The coupling spacer is formed by providing a material stack including at least a precursor paramagnetic hexagonal metal phase material forming multilayered structure that includes alternating layers of magnetic metal, Me, and metal, X, and then thermally soaking the material stack. |
---|---|
Bibliography: | Application Number: US202117550464 |