Solar cell emitter region fabrication with differentiated P-type and N-type architectures and incorporating a multi-purpose passivation and contact layer

Methods of fabricating solar cell emitter regions with differentiated P-type and N-type architectures and incorporating a multi-purpose passivation and contact layer, and resulting solar cells, are described. In an example, a solar cell includes a substrate having a light-receiving surface and a bac...

Full description

Saved in:
Bibliographic Details
Main Authors Rim, Seung Bum, Westerberg, Staffan
Format Patent
LanguageEnglish
Published 27.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Methods of fabricating solar cell emitter regions with differentiated P-type and N-type architectures and incorporating a multi-purpose passivation and contact layer, and resulting solar cells, are described. In an example, a solar cell includes a substrate having a light-receiving surface and a back surface. A P-type emitter region is disposed on the back surface of the substrate. An N-type emitter region is disposed in a trench formed in the back surface of the substrate. An N-type passivation layer is disposed on the N-type emitter region. A first conductive contact structure is electrically connected to the P-type emitter region. A second conductive contact structure is electrically connected to the N-type emitter region and is in direct contact with the N-type passivation layer.
Bibliography:Application Number: US201615362045