Method, apparatus, and system for wireless vital monitoring using high frequency signals

Methods, apparatus and systems for wireless vital sign monitoring are described. In one example, a described system comprises: a transmitter configured to transmit a wireless signal through a wireless channel of a venue; a receiver configured to receive the wireless signal through the wireless chann...

Full description

Saved in:
Bibliographic Details
Main Authors Wang, Fengyu, Wu, Chenshu, Zeng, Xiaolu, Au, Oscar Chi-Lim, Wang, Beibei, Liu, K. J. Ray
Format Patent
LanguageEnglish
Published 11.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Methods, apparatus and systems for wireless vital sign monitoring are described. In one example, a described system comprises: a transmitter configured to transmit a wireless signal through a wireless channel of a venue; a receiver configured to receive the wireless signal through the wireless channel that is being impacted by an object motion of an object in the venue; and a processor. At least one of the transmitter or the receiver comprises an array of antennas used to transmit or receive the wireless signal. The object motion comprises at least one non-periodic body motion of the object and at least one periodic vital-sign motion of the object. The processor is configured for: segmenting space around the venue into a plurality of sectors based on a beamforming and the received wireless signal, wherein each sector of the plurality of sectors is associated with a spatial direction relative to the array of antennas, obtaining a plurality of time series of channel information (CI) of the wireless channel based on the beamforming, wherein each time series of CI (TSCI) of the plurality of TSCI is associated with a respective sector of the plurality of sectors, isolating the object motion of the object in the plurality of TSCI to generate a plurality of isolated TSCI, compensating for the at least one non-periodic body motion of the object in the plurality of isolated TSCI to generate a plurality of compensated TSCI, and monitoring the at least one periodic vital-sign motion of the object based on the plurality of compensated TSCI.
Bibliography:Application Number: US202217945995