Polaritonic fiber probe and method for nanoscale measurements

The invention offers high resolution and accuracy for nanoscale device characterization from ultraviolet through microwave wavelengths. Instead of collecting light after emission in near-field that decays to far-field, the present invention directly couples the near-field waves to a polaritonic-coat...

Full description

Saved in:
Bibliographic Details
Main Authors Zhang, Zhenrong, Minn, Khant, Birmingham, Blake
Format Patent
LanguageEnglish
Published 12.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The invention offers high resolution and accuracy for nanoscale device characterization from ultraviolet through microwave wavelengths. Instead of collecting light after emission in near-field that decays to far-field, the present invention directly couples the near-field waves to a polaritonic-coated probe. The polaritonic coating can be formed on an wavelength tuned optical fiber to receive the coupled emission and form polaritons, including plasmons, phonons, and magnons, using the polaritonic material. The polaritons propagate along the probe decay back into the fiber core without substantial losses to far-field and are transmitted to a detector, such as a spectroscope. The coupling of the near-field energy to emission detected through the tip apex of fiber can be expressed as emission spectra. Through mapping with other spatial points, multi-dimensional displays and other information can be provided. The resolution can be less than 100 nanometers, including an order of magnitude less than 100 nanometers.
Bibliography:Application Number: US202117498459