Bit transition enhanced direct position estimation in global satellite system positioning

Embodiments of the present invention provide a method, system and computer program product for bit transition enhanced direct position estimation (DPE) from global navigation satellite system (GNSS) signals and includes the reception in a GNSS receiver of signals from multiple, different satellites...

Full description

Saved in:
Bibliographic Details
Main Authors Gusi, Adrià, Closas, Pau, Ribot, Miquel
Format Patent
LanguageEnglish
Published 22.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Embodiments of the present invention provide a method, system and computer program product for bit transition enhanced direct position estimation (DPE) from global navigation satellite system (GNSS) signals and includes the reception in a GNSS receiver of signals from multiple, different satellites in multiple satellite constellations adapted for use with the GNSS. The method estimates the GNSS receiver parameters position, velocity, clock bias, clock drift, and optionally and if unknown, the receiver time. The method generates a model of the received GNSS signals that depends on the receiver parameters. Uniquely, the method includes the synchronization of both a primary code and also a secondary code in the received GNSS signal model, in addition to time delays, Doppler shifts, and other relevant parameters for positioning. Finally, if the secondary code of a particular signal is unknown, the method determines the combination of bit transitions that maximizes the optimization problem.
Bibliography:Application Number: US202117167936