Generating recommendations using a deep-learning model
In one embodiment, a method involves accessing training data, where the training data contains an ordered sequence of data associated with a plurality of entities, training one or more deep learning models to determine, from the ordered sequence of data, a first set of embeddings for each entity of...
Saved in:
Main Author | |
---|---|
Format | Patent |
Language | English |
Published |
25.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In one embodiment, a method involves accessing training data, where the training data contains an ordered sequence of data associated with a plurality of entities, training one or more deep learning models to determine, from the ordered sequence of data, a first set of embeddings for each entity of the plurality of entities, where each entity has a plurality of entity attributes, determining, for each of the plurality of entity attributes, a corresponding initial embedding, training the one or more deep-learning models to refine the initial embeddings according to one or more criterion, generating one or more updated embeddings for each of the plurality of entities based on the refined initial embeddings of the plurality of entity attributes, and modifying the first set of embeddings based on the one or more updated embeddings. |
---|---|
Bibliography: | Application Number: US202217833194 |