STDP with synaptic fatigue for learning of spike-time-coded patterns in the presence of parallel rate-coding

A circuit implementing a spiking neural network that includes a learning component that can learn from temporal correlations in the spikes regardless of correlations in the rates. In some embodiments, the learning component comprises a rate-discounting component. In some embodiments, the learning ru...

Full description

Saved in:
Bibliographic Details
Main Authors Moraitis, Timoleon, Koelmans, Wabe W, Tuma, Tomas, Sebastian, Abu
Format Patent
LanguageEnglish
Published 28.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A circuit implementing a spiking neural network that includes a learning component that can learn from temporal correlations in the spikes regardless of correlations in the rates. In some embodiments, the learning component comprises a rate-discounting component. In some embodiments, the learning rule computes a rate-normalized covariance (normcov) matrix, detects clusters in this matrix, and sets the synaptic weights according to these clusters. In some embodiments, a synapse with a long-term plasticity rule has an efficacy that is composed by a weight and a fatiguing component. In some embodiments, A Hebbian plasticity component modifies the weight component and a short-term fatigue plasticity component modifies the fatiguing component. The fatigue component increases with increases in the presynaptic spike rate. In some embodiments, the fatigue component increases are implemented in a spike-based manner. In some embodiments, the Hebbian plasticity is a spike-timing-dependent plasticity (STDP), resulting in a fatiguing STDP (FSTDP) synapse.
Bibliography:Application Number: US202217692491