System and method for tree-based machine learning

Systems and methods of updating a multi-level data structure for controlling an agent. The method may include: accessing a data structure defining one or more nodes. A non-leaf node of the one or more nodes may be associated with one or more edges for traversing to a subsequent node. An edge of the...

Full description

Saved in:
Bibliographic Details
Main Authors Xiao, Chenjun, Huang, Ruitong
Format Patent
LanguageEnglish
Published 28.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Systems and methods of updating a multi-level data structure for controlling an agent. The method may include: accessing a data structure defining one or more nodes. A non-leaf node of the one or more nodes may be associated with one or more edges for traversing to a subsequent node. An edge of the one or more edges may be associated with a visit count and a softmax state-action value estimation. The method may include identifying a node trajectory including a series of nodes based on an asymptotically converging sampling policy, where the node trajectory includes a root node and a leaf node of the data structure, determining a reward indication associated with the node trajectory; and for at least one non-leaf node, updating the visit count and the softmax state-action value estimate associated with one or more edges of the non-leaf node based on the determined reward indication.
Bibliography:Application Number: US202016751203