Mechanisms for continuous improvement of automated machine learning
Mechanisms are provided for optimizing an automated machine learning (AutoML) operation to configure parameters of a machine learning model. AutoML logic is configured based on an initial default value and initial range for sampling of a parameter of the machine learning (ML) model and an initial Au...
Saved in:
Main Authors | , , , |
---|---|
Format | Patent |
Language | English |
Published |
23.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Mechanisms are provided for optimizing an automated machine learning (AutoML) operation to configure parameters of a machine learning model. AutoML logic is configured based on an initial default value and initial range for sampling of a parameter of the machine learning (ML) model and an initial AutoML process is executed on the ML model based on a plurality of datasets comprising a plurality of domains of data elements, utilizing the initially configured AutoML logic. For each domain, a cross-dataset default value and cross-dataset value range are derived from results of the execution of the initial AutoML process. For each domain, an entry is stored in a data structure, the entry storing the derived cross-dataset default value and cross-dataset value range for the domain. The AutoML logic performs a subsequent AutoML process on a new dataset based on one or more entries of the data structure. |
---|---|
Bibliography: | Application Number: US202016829055 |