Method for forming film stacks with multiple planes of transistors having different transistor architectures
Three-dimensional integration can overcome scaling limitations by increasing transistor density in volume rather than area. To provided gate-all-around field-effect-transistor devices with different threshold voltages and doping types on the same substrate, methods are provided for growing adjacent...
Saved in:
Main Authors | , |
---|---|
Format | Patent |
Language | English |
Published |
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Three-dimensional integration can overcome scaling limitations by increasing transistor density in volume rather than area. To provided gate-all-around field-effect-transistor devices with different threshold voltages and doping types on the same substrate, methods are provided for growing adjacent nanosheet stacks having channels with different doping profiles. In one example, a first nanosheet stack is formed having channels with first doping characteristics. Then the first nanosheet stack is etched, and a second nanosheet stack is formed in plane with the first nanosheet stack. The second nanosheet stack has channels with different doping characteristics. This process can be repeated for additional nanosheet stacks. In another example, the formation of the nanosheet stacks with channels having different doping characteristics is performed by restricting layer formation to predefined locations using a patterned layer (e.g., a conformal oxide layer) that limits epitaxial growth to exposed regions of the substrate where the patterned layer is etched away. |
---|---|
Bibliography: | Application Number: US201916665599 |