Method for manufacturing a glass preform for optical fibers

Methods for manufacturing fluorine-doped glass preforms for optical fibers are disclosed. An exemplary method includes exposing a soot preform to an atmosphere containing a fluorine-containing gas in a first elongated chamber of a first furnace. The first elongated chamber typically has a single iso...

Full description

Saved in:
Bibliographic Details
Main Authors Cocchini, Franco, Caronna, Valeria, Schiaffo, Antonio, Grieco, Stefano, Di Giambattista, Irene
Format Patent
LanguageEnglish
Published 30.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Methods for manufacturing fluorine-doped glass preforms for optical fibers are disclosed. An exemplary method includes exposing a soot preform to an atmosphere containing a fluorine-containing gas in a first elongated chamber of a first furnace. The first elongated chamber typically has a single isothermal hot zone, which may be maintained at a doping temperature of about 800° C. to 1200° C., to obtain a fluorine-doped soot preform. The exemplary method further includes dehydrating the fluorine-doped soot preform by exposing it to an atmosphere containing a chlorine-containing gas in a second elongated chamber of a second furnace. The second elongated chamber typically has an upper hot zone, which may be maintained at a dehydration temperature of about 1000° C. to 1350° C., and a lower hot zone, which may be maintained at a consolidation temperature of about 1500° C. to 1650° C. Dehydration of the fluorine-doped soot preform typically occurs in the upper hot zone of the second furnace. The exemplary method further includes consolidating the fluorine-doped soot preform within the lower hot zone of the second furnace to form a fluorine-doped glass preform.
Bibliography:Application Number: US201916668434