Job applicant probability of confirmed hire
Techniques for predicting relevance of social networking service member accounts to a job posting. In an embodiment, a candidate predictor engine of a system encodes data representing an applicant quality (AQ) score for each job/applicant pair for a plurality of applicants to a job posting. Addition...
Saved in:
Main Authors | , , |
---|---|
Format | Patent |
Language | English |
Published |
28.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Techniques for predicting relevance of social networking service member accounts to a job posting. In an embodiment, a candidate predictor engine of a system encodes data representing an applicant quality (AQ) score for each job/applicant pair for a plurality of applicants to a job posting. Additionally, the system stores the encoded data and assigns member-level weights to each of the applicants. Moreover, the system calculates weighted AQ scores for each of the job/applicant pairs, the weighted AQ scores being products of respective AQ scores and member-level weights. Furthermore, the system sums the weighted AQ scores to derive a total weighted score for the job posting. Then, the candidate predictor engine generates a job-level probability of confirmed hire (pCH) based on the total weighted score, the job-level pCH indicating a likelihood of the posting being filled by an applicant. Also, the system transmits the job-level pCH to a client for display. |
---|---|
Bibliography: | Application Number: US201715660779 |