Metallic magnetic material with controlled curie temperature and processes for preparing the same
The invention relates to a metallic magnetic material with biocompatible elements (Ti, Ta or Mn), with glassy quasi-amorphous structure and controlled Curie temperature, and the processes for preparing the same. The hereby material has its composition expressed in atomic percent: Fe=59 . . . 67%, Nb...
Saved in:
Main Authors | , |
---|---|
Format | Patent |
Language | English |
Published |
14.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The invention relates to a metallic magnetic material with biocompatible elements (Ti, Ta or Mn), with glassy quasi-amorphous structure and controlled Curie temperature, and the processes for preparing the same. The hereby material has its composition expressed in atomic percent: Fe=59 . . . 67%, Nb=0.1 . . . 1%, B=20%, biocompatible material (Ti, Ta or Mn)=12 . . . 20%), Curie temperature within the interval 0 . . . 70° C., saturation magnetic induction of 0.05 . . . 1.1 T and strong magnetic response when introduced in a high frequency magnetic field. The processes used to obtain this material directly under the form of ribbons, glass-coated micro/nanowires or nano/micropowders consist in rapid quenching of the mixtures with previously mentioned compositions under extremely rigorous controlled conditions, in high vacuum of minimum 10−4 mbars or in controlled helium or argon atmosphere in order to avoid oxidation. |
---|---|
Bibliography: | Application Number: US201415101397 |