Metallic magnetic material with controlled curie temperature and processes for preparing the same

The invention relates to a metallic magnetic material with biocompatible elements (Ti, Ta or Mn), with glassy quasi-amorphous structure and controlled Curie temperature, and the processes for preparing the same. The hereby material has its composition expressed in atomic percent: Fe=59 . . . 67%, Nb...

Full description

Saved in:
Bibliographic Details
Main Authors Chiriac, Horia, Lupu, Nicoleta
Format Patent
LanguageEnglish
Published 14.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The invention relates to a metallic magnetic material with biocompatible elements (Ti, Ta or Mn), with glassy quasi-amorphous structure and controlled Curie temperature, and the processes for preparing the same. The hereby material has its composition expressed in atomic percent: Fe=59 . . . 67%, Nb=0.1 . . . 1%, B=20%, biocompatible material (Ti, Ta or Mn)=12 . . . 20%), Curie temperature within the interval 0 . . . 70° C., saturation magnetic induction of 0.05 . . . 1.1 T and strong magnetic response when introduced in a high frequency magnetic field. The processes used to obtain this material directly under the form of ribbons, glass-coated micro/nanowires or nano/micropowders consist in rapid quenching of the mixtures with previously mentioned compositions under extremely rigorous controlled conditions, in high vacuum of minimum 10−4 mbars or in controlled helium or argon atmosphere in order to avoid oxidation.
Bibliography:Application Number: US201415101397