Federated learning for training machine learning models
An approach to federated learning of a machine learning model may be provided. The approach may include broadcasting hyperparameters of a machine learning model to one or more client computing devices from a primary device associated with an outer loop or an inner loop. A gradient for the loss funct...
Saved in:
Main Authors | , , |
---|---|
Format | Patent |
Language | Chinese English |
Published |
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An approach to federated learning of a machine learning model may be provided. The approach may include broadcasting hyperparameters of a machine learning model to one or more client computing devices from a primary device associated with an outer loop or an inner loop. A gradient for the loss function may be calculated at the client device if previous gradients have been sufficiently large. If gradients exceeds a threshold, the client can send the mini-batch of gradients or the difference of the mini-batch of gradients back to the primary device. A search direction may be calculated based on the full gradient of the loss function for an outer loop or the mini-batch of gradient differences for an inner loop. A learning rate step may be calculated from the search direction. The hyperparameter may be updated for the inner loop based on the learning rate. |
---|---|
Bibliography: | Application Number: TW202211133126 |