CUTTING TOOL MANUFACTURING METHOD

A cutting tool manufacturing method according to an embodiment of the present invention may comprise the steps of: 3D modeling a basic structure of a cutting tool; generating a mesh by performing mesh analysis on the basic structure of the cutting tool; performing structural analysis on the basic st...

Full description

Saved in:
Bibliographic Details
Main Authors JUNG GOO SANG, KIM HYEON NAM, JEON JIN UNG, YEO CHAN JU
Format Patent
LanguageEnglish
Korean
Published 10.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A cutting tool manufacturing method according to an embodiment of the present invention may comprise the steps of: 3D modeling a basic structure of a cutting tool; generating a mesh by performing mesh analysis on the basic structure of the cutting tool; performing structural analysis on the basic structure of the cutting tool; deriving a topology optimal structure of the cutting tool based on the data calculated through the structural analysis; performing structural analysis on the topology optimal structure of the cutting tool; 3D printing the cutting tool in an additive manufacturing method; and performing heat treatment to increase the strength of the cutting tool obtained through 3D printing. Thus, the present invention can provide the cutting tool manufacturing method that can improve performance such as reducing the weight of the cutting tool, rotating efficiency, and cooling efficiency by applying a DFAM technique. 본 발명의 일 실시예에 따른 절삭공구 제조방법은, 절삭공구의 기본구조를 3D모델링하는 단계, 상기 절삭공구의 기본구조에 대한 메쉬(mesh)분석을 수행하여 메쉬를 생성하는 단계, 상기 절삭공구의 기본구조에 대한 구조해석을 수행하는 단계, 상기 구조해석을 통해 계산된 데이터를 바탕으로, 상기 절삭공구의 위상최적구조를 도출하는 단계, 상기 절삭공구의 위상최적구조에 대한 구조해석을 수행하는 단계, 적층가공 방식으로 상기 절삭공구를 3D 프린팅하는 단계 및 3D 프린팅으로 얻은 상기 절삭공구의 강도를 증가시키기 위해 열처리하는 단계를 포함할 수 있다.
Bibliography:Application Number: KR20210149413