APPARATUS AND METHOD FOR PERSONAL IDENTIFICATION BASED ON DEEP NEURAL NETWORK

The present specification relates to a device and a method for personal identification based on a deep neural network. The method for personal identification according to one embodiment of the present specification comprises: a step of receiving, by a wireless signal collection part, a plurality of...

Full description

Saved in:
Bibliographic Details
Main Authors KIM SEUNG HYUN, BAN SEONG HYUN, KIM YU SUNG, SHIN SEUNG HWAN, CHAE KEUN HONG
Format Patent
LanguageEnglish
Korean
Published 20.04.2023
Subjects
Online AccessGet full text

Cover

More Information
Summary:The present specification relates to a device and a method for personal identification based on a deep neural network. The method for personal identification according to one embodiment of the present specification comprises: a step of receiving, by a wireless signal collection part, a plurality of wireless signals comprising spatial information and identification information of a subject to be identified through a plurality of receivers of different locations; a step of processing, by a manipulation signal generating part, the spatial information through a first deep neural network model learned in advance to generate a manipulation signal from the wireless signal; and a step of identifying, by a personal identification processing part, the subject to be identified of a specific space in which the identification information of the subject to be identified of the manipulation signal is considered as an input of a second deep neural network model. Therefore, the present invention is capable of allowing a large amount of information to be transmitted and received within a short time. 본 명세서는 심층 신경망 기반 개인 식별 장치 및 방법에 관한 것이다. 본 명세서의 일 실시예에 따른 개인 식별 방법은 무선 신호 수집부가 서로 다른 위치의 복수의 수신기를 통해 공간 정보 및 식별 대상 자의 식별 정보를 포함하는 복수의 무선 신호를 수신하는 단계, 조작 신호 생성부가 미리 학습된 제1 심층 신경망 모델을 통해 상기 공간 정보를 가공하여 상기 무선 신호로부터 조작 신호를 생성하는 단계 및 개인 식별 처리부가 상기 조작 신호의 식별 대상자의 식별 정보를 제2 심층 신경망 모델의 입력으로 하여 특정 공간의 식별 대상자를 식별하는 단계를 포함한다.
Bibliography:Application Number: KR20210135882