Feature Extraction Method and System through Attentive Convolution Operation
Provided are a method and system for extracting a feature through an attentive convolution operation. In the convolution operation that extracts a feature of an input tensor, a query tensor and key tensor are created using a query matrix and key matrix which are capable of learning before the convol...
Saved in:
Main Authors | , , |
---|---|
Format | Patent |
Language | English Korean |
Published |
10.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Provided are a method and system for extracting a feature through an attentive convolution operation. In the convolution operation that extracts a feature of an input tensor, a query tensor and key tensor are created using a query matrix and key matrix which are capable of learning before the convolution operation, and attention is created using the tensors. Using the attention, a filter value is adjusted according to a value of the input tensor for each unit operation, and the output is created with the adjusted filter value.
어텐티브 합성곱 연산을 통한 특징 추출 방법 및 시스템이 제공된다. 입력 텐서의 특징을 추출하는 합성곱 연산에서 합성곱 연산 전 학습이 가능한 쿼리 행렬과 키 행렬을 이용하여 쿼리 텐서와 키 텐서를 생성하여 이러한 텐서들을 이용하여 어텐션을 만들고, 어텐션을 이용하여 각 단위 연산마다 입력 텐서의 값에 따라 필터 값을 조정하고 조정된 필터값으로 출력을 생성하도록 한다. |
---|---|
Bibliography: | Application Number: KR20200144053 |