PROCESS AND APPARATUS FOR CONVERSION OF SILICON TETRACHLORIDE TO TRICHLOROSILANE

A process for hydrogenating chlorosilanes in a reactor, wherein at least two reactant gas streams are introduced separately from one another into a reaction zone, wherein the first reactant gas stream comprising silicon tetrachloride is conducted via a first heat exchanger unit in which it is heated...

Full description

Saved in:
Bibliographic Details
Main Authors RING ROBERT, PAETZOLD UWE, BANOS NOEMI
Format Patent
LanguageEnglish
Korean
Published 23.10.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A process for hydrogenating chlorosilanes in a reactor, wherein at least two reactant gas streams are introduced separately from one another into a reaction zone, wherein the first reactant gas stream comprising silicon tetrachloride is conducted via a first heat exchanger unit in which it is heated and is then conducted through a heating unit which heats it to a first temperature before the first reactant gas stream reaches the reaction zone, and wherein the second reactant gas stream comprising hydrogen is heated by a second heat exchanger unit to a second temperature, wherein the first temperature is greater than the second temperature, and then introduced into the reaction zone, such that the mixing temperature of the two reactant gas streams in the reaction zone is between 850° C. and 1300° C., and said reactant gas streams react to give product gases comprising trichlorosilane and hydrogen chloride, wherein the product gases obtained in the reaction are conducted through said at least two heat exchanger units and preheat the reactant gas streams of the reaction by the countercurrent principle, wherein the flow passes first through the first heat exchanger unit and then through the second heat exchanger unit. A reactor for hydrogenating chlorosilanes, comprising two gas inlet devices through which reactant gases can be introduced separately from one another into the reactor, and at least one gas outlet device through which a product gas stream can be conducted, at least two heat exchanger units which are connected to one another and which are suitable for heating reactant gases separately from one another by means of the product gases conducted through the heat exchanger units, and a heating zone which is arranged between a first heat exchanger unit and a reaction zone and in which there is at least one heating element.
Bibliography:Application Number: KR20137019223