Decision-making support system and support technology for emergency salvage of accidental ships to prevent marine pollution

A marine pollution prevention and emergency rescue decision support system for accident ships comprises: a module for assessing and predicting accident ship condition which assesses the linearity, hydrostatic characteristics, loading and damage status, undamaged/damaged stability, and longitudinal s...

Full description

Saved in:
Bibliographic Details
Main Authors LEE SEUNG GUK, CHOI HYUEK JIN, HONG SA YOUNG, SEO MIN GUK
Format Patent
LanguageEnglish
Korean
Published 04.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A marine pollution prevention and emergency rescue decision support system for accident ships comprises: a module for assessing and predicting accident ship condition which assesses the linearity, hydrostatic characteristics, loading and damage status, undamaged/damaged stability, and longitudinal strength of the accident ship based on a standard ship database established in advance at the beginning of the accident, and predicts changes in the condition of the accident ship over time and predicts the performance of the accident ship according to the rescue scenario; and an emergency towing force estimation module that assesses emergency towing safety by calculating emergency towing force and simulating dynamic behavior of the accident ship based on information about the accident ship obtained from the accident ship state evaluation and prediction module at the initial stage of the accident. The present invention has the effect of minimizing damage and maximizing response capabilities. 본 발명에 따른 해양 오염 방지 사고 선박 긴급 구난 의사 결정 지원 시스템은, 사고 발생 초기 미리 구축한 표준 선박 데이터베이스를 토대로 하여 사고 선박의 선형정의, 유체정역학적 특성, 적하 및 손상 상태, 비손상/손상 복원성 및 종강도를 평가하고, 시간경과에 따른 사고선박 상태변화 예측 및 구난 시나리오에 따른 사고 선박 성능을 예측하는 사고선박 상태평가 및 예측 모듈; 및 상기 사고 초기 사고 선박 상태 평가 및 예측 모듈에서 얻어진 사고 선박에 대한 정보들을 토대로 하여 사고 선박의 비상 예인력 계산 및 동적 거동을 시뮬레이션하여 비상 예인 안전성을 평가하는 비상 예인력 추정 모듈;을 포함하는 것을 특징으로 한다.
Bibliography:Application Number: KR20220105197