LOAD STRESS ESTIMATION DEVICE AND METHOD CORRESPONDING TO FATIGUE LIFE
To provide a device for estimating a relationship between a fatigue life in which a way of machine learning is improved for precise estimation, and a load stress.SOLUTION: A load stress estimation device includes a function portion (310) for reading designation of a type of fatigue limit estimation...
Saved in:
Main Authors | , , , , |
---|---|
Format | Patent |
Language | English Japanese |
Published |
13.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To provide a device for estimating a relationship between a fatigue life in which a way of machine learning is improved for precise estimation, and a load stress.SOLUTION: A load stress estimation device includes a function portion (310) for reading designation of a type of fatigue limit estimation and designation of mechanical characteristics used in a decision tree of machine learning, a function portion (320) for reading fatigue data of a designated metal structure material from a fatigue data sheet, and a machine learning arithmetic section (330) for performing machine learning with a machine-learned teacher regarding a load stress corresponding to a fatigue life to read fatigue data of a metal structure material by using the designated mechanical characteristics, and an arithmetic result of load stress estimation corresponding to a fatigue life corresponding to a designated type of fatigue limit estimation is outputted by using mechanical characteristics designated by the machine learning arithmetic section that performs the machine learning with a teacher.SELECTED DRAWING: Figure 3
【課題】精度の良い推定が得られるように機械学習の仕方を改良した疲労寿命と負荷応力の関係を推定する装置を提供すること。【解決手段】疲労限度推定の種類の指定と、機械学習の決定木で用いる機械特性の指定を読込む機能部(310)と、疲労データシートから、指定された金属構造材料の疲労データを読込む機能部(320)と、前記指定された機械特性を用いて、読み込んだ金属構造材料の疲労データに対して、疲労寿命に対応する負荷応力の機械学習済の教師付き機械学習を行った機械学習演算部(330)とを備え、前記教師付き機械学習を行った機械学習演算部により、指定された機械特性を用いて、指定された疲労限度推定の種類に応じた疲労寿命に対応する負荷応力推定の演算結果を出力するものである。【選択図】図3 |
---|---|
Bibliography: | Application Number: JP20220138932 |