COMPUTING MACHINE SYSTEM AND INTERVENTION EFFECT PREDICTION METHOD

To provide a system and a method for predicting an intervention effect when performing multiple kinds of interventions to a subject continuously.SOLUTION: A computing machine 100 manages a first model for calculating an output value by using time-series data including a value regarding intervention...

Full description

Saved in:
Bibliographic Details
Main Authors ZHU PEIFEI, LI ZISHENG, OGINO MASAHIRO
Format Patent
LanguageEnglish
Japanese
Published 24.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To provide a system and a method for predicting an intervention effect when performing multiple kinds of interventions to a subject continuously.SOLUTION: A computing machine 100 manages a first model for calculating an output value by using time-series data including a value regarding intervention to a person, a second model for calculating a feature amount by mapping an output value of the first model to a feature amount space, and a third model for outputting a prediction value of an intervention effect from a feature amount. The time-series data include multiple data series including time of intervention, multiple factors for expressing a human state, and a type and degree of intervention. The computing machine 100 calculates a prediction value of a continuous intervention effect corresponding to time-series data by using the first model, the second model, and the third model. The second model maps an output value of the first model to a feature amount space such that a difference in distribution in the feature amount space of multiple data strings used for machine learning becomes small.SELECTED DRAWING: Figure 2 【課題】継続的に複数種類の介入を対象者に対して行う場合の介入効果を予測するシステム及び方法を提供する。【解決手段】計算機100は、人に行った介入に関する値を含む時系列データを用いて出力値を算出する第1モデルと、第1モデルの出力値を特徴量空間に写像することによって特徴量を算出する第2モデルと、特徴量から介入の効果の予測値を出力する第3モデルと、を管理する。時系列データは、介入が行われた時間、人の状態を表す複数の因子並びに介入の種別及び程度を含むデータ列を複数含む。計算機100は、第1モデル、第2モデル及び第3モデルを用いて、時系列データに対応する連続的な介入の効果の予測値を算出する。第2モデルは、機械学習で用いる複数のデータ列の特徴量空間における分布の差異が小さくなるように、第1モデルの出力値を特徴量空間に写像する。【選択図】図2
Bibliography:Application Number: JP20210185031